Meme Strategy
Audit Report

Fri Oct 17 2025

% contact@bitslab.xyz Y https://twitter.com/scalebit_

©

ScaleBit

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Meme Strategy Audit Report

1.1 Project Information

Description

Type

Auditors

Timeline

Languages

Platform

Methods

Source Code

Commits

MEMS is an innovative DeFi protocol that combines
automated meme token trading through a queue-based
system, dynamic fee collection via a Uniswap V4 hook with 3-
phase fee system, a buyback and burn mechanism that
automatically uses profits to repurchase and burn MEMS
tokens, and treasury operations that allocate 80% of fees to
the strategy while 20% goes to the treasury as rake

DeFi

Alex,hyer,Light

Thu Oct 09 2025 - Fri Oct 17 2025

Solidity

EVM Chains

Architecture Review, Unit Testing, Manual Review

https://github.com/yokai-laboratory/mems-strategy

2ba2cff9a5e7bf2ff6332d1ad0b7d445aece3665
cc0f970fa3ad397b35602cea2e8087face56e5e7
d493¢92f9b2b0b8a1113f073af9d97106a7daabd

1/27

https://github.com/yokai-laboratory/mems-strategy
https://github.com/yokai-laboratory/mems-strategy/tree/2ba2cff9a5e7bf2ff6332d1ad0b7d445aece3665
https://github.com/yokai-laboratory/mems-strategy/tree/cc0f970fa3ad397b35602cea2e8087face56e5e7
https://github.com/yokai-laboratory/mems-strategy/tree/d493c92f9b2b0b8a1113f073af9d97106a7daabd

1.2 Files in Scope

The following are the SHAT hashes of the original reviewed files.

ID File SHA-1 Hash

MST src/MemeStrategy.sol 5d42b5345345c44c00a7cf2f5b6c9
5c39ee37591

MSH src/MemeStrategyHook.sol 2d2d44c73954b0445675d84791eb

d93afa513443

2/27

1.3 Issue Statistic

Item Count Fixed Acknowledged
Total 9 8 1
Informational 4 4 0
Minor 4 4 0
Medium 1 0 1
Major 0 0 0

Critical 0 0 0

3/27

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

e Transaction-ordering dependence
e Timestamp dependence

e Integer overflow/underflow

e Number of rounding errors

e Unchecked External Call

e Unchecked CALL Return Values

e Functionality Checks

e Reentrancy

e Denial of service / logical oversights
e Access control

e Centralization of power

e Business logic issues

e (Gas usage

e Fallback function usage

e tx.origin authentication

e Replay attacks

e Coding style issues

4/27

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

The code scope is illustrated in section 1.2.

e Carry out relevant security tests on the testnet or the mainnet;

e Ifthere are any questions during the audit process, communicate with the code owner
in time. The code owners should actively cooperate (this might include providing the
latest stable source code, relevant deployment scripts or methods, transaction
signature scripts, exchange docking schemes, etc.);

e The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/27

This report has been commissioned by

vulnerabilities in the source code of the

to identify any potential issues and
smart contract, as well as any

contract dependencies that were not part of an officially recognized library. In this audit, we

have utilized various techniques, including manual code review and static analysis, to

identify potential vulnerabilities and security issues.

During the audit, we identified 9 issues of varying severity, listed below.

MSH-1

MSH-2

MST-1

MST-2

MST-3

MST-4

MST-5

Title

Centralization Risk

Redundant Code

addOperator and
removeOperator Lack Duplicate

State Checks

Missing Check to Prevent
Redundant Router Updates

addModule and removeModule
Functions are Missing Event
Emissions

Missing Existence Checks in
addMemToken and

removeMemeToken

Inconsistent Revert Message in
onlyOwnerOrOperator Modifier

6/27

Severity

Medium

Informational

Minor

Minor

Minor

Minor

Informational

Status

Acknowledged

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

MST-6

MSV-1

Comment Description Inconsistent
with Code Implementation

Unused purchaseld Parameter

Passed to _addActivePurchase()
Function

7127

Informational

Informational

Fixed

Fixed

Here are the relevant actors with their respective abilities within the Smart
Contract:
Owner

e addOperator : Add operator address.

removeOperator : Remove operator address.

e renounceOwnership : Permanently renounce ownership.

setFeeExemption : Set fee exemption status for addresses, allowing specific modules

to bypass fees.
e disableFees : Disable fee collection.
e updateFeeTier : Update single fee tier parameters.
e updateAllFeeTiers : Update all fee tier configurations at once.
e emergencyWithdrawETH : Emergency withdraw ETH funds from contract.
e initializePoolAndAddLiquidity : Initialize Uniswap V4 pool and add initial liquidity.
e enableTrading : Enable token trading.
e addMemeToken : Add other tokens to whitelist for trading.
e removeMemeToken : Remove tokens from whitelist.
e updateTokenRouter : Update router address for whitelisted tokens.
e setExecutorReward : Set executor reward amount.
e setMaxSaleSlippage : Set maximum slippage tolerance when selling tokens.
e setMinForceSellBPS : Set minimum return percentage for forced sales.
e setMaxBuybackSlippage : Set maximum slippage for MEMS token buybacks.

e setHookAddress : Update hook contract address.

8/27

addApprovedRouter : Add approved router addresses for trading.
removeApprovedRouter : Remove approved router addresses.
setMaxSinglePurchase : Set maximum ETH amount for single purchase.
setMinSpikeThreshold : Set minimum ETH threshold to trigger fee spikes.
setMaxQueueSize : Set maximum size for purchase queue.

addModule : Add module contracts to whitelist.

removeModule : Remove module contracts from whitelist.

pause : Pause all critical contract operations.

unpause : Unpause and resume contract operations.

forceSell : Force sell tokens for specific purchase ID.
forceSellToTreasury : Force sell tokens to treasury.

forceBurn : Manually execute buyback and burn of MEMS tokens.

emergencyWithdrawTokens : Emergency withdraw ERC20 tokens from contract
(excluding MEMS).

emergencyWithdrawETH : Emergency withdraw ETH funds from contract.

fundModule : Push ETH funds to whitelisted modules.

Operator

enableFees : Enable fee collection system.

flushToStrategy : Flush accumulated strategy fees to MemeStrategy contract.
flushRake : Flush accumulated rake fees to treasury address.

flushAllFees : Flush all pending fees at once.

updateFeeTier : Update fee tier parameters.

updateAllFeeTiers : Update all fee tiers.

9/27

e enableTrading : Enable token trading.

e addMemeToken : Add other tokens to whitelist.

e removeMemeToken : Remove tokens from whitelist.

e queueMemePurchase : Add purchase requests to queue.

e forceBuyMeme : Force immediate purchase.

e clearQueue : Clear specific queue ID purchase requests.

e removeQueuedPurchase : Remove specific purchase requests from queue.

e executeQueuedPurchase : Execute specific purchase requests from queue.
MemeStrategy Contract

e notifyFirstSale : Notify hook contract that first sale is completed, triggering Phase 2
activation.

o triggerFeeSpike : Trigger fee spike based on sale amount.

e addFeesETH : Receive ETH fees transferred from hook contract.
PoolManager

e beforeSwap : Called before swap to handle buy-side fees.
o afterSwap : Called after swap to handle sell-side fees.

e unlockCallback : Handle Uniswap V4 unlock callback to execute atomic swaps.

e getCurrentFee : Query current dynamic fees.

e getPhaselnfo : Get current phase information.

e getSpikelnfo : Get active fee spike information.

e getTierForAmount : Query corresponding fee tier based on ETH amount.

e getPendingFees : Get pending fee balances.

10/27

e executeSale : Execute token sale and immediately buyback MEMS when target price is
reached.

e executeSaleToTreasury : Execute token sale to treasury.

e receive : Receive ETH deposits to contract.
Module

e pullFundsFromTreasury : Pull ETH funds from treasury to module contract.

11727

MSH-1 Centralization Risk

Medium

Acknowledged

src/MemeStrategyHook.sol#305,315,327,338,350,363,377,388,407,545,565,769,791,836;
src/MemeStrategyHook.sol#462,510,517,526,611,627,640,668,725,761,776,795,803,807,814,818,823,¢

Both MemeStrategy.sol and MemeStrategyHook.sol give the Owner (and in some cases
operator) broad unilateral powers over funds, trading behavior, and economic parameters.

Key privileged capabilities include:

e Fund Withdrawal: emergencyWithdrawETH , emergencyWithdrawTokens and
emergencyWithdrawETH allow the Owner to withdraw essentially all ETH and ERC20
held by the contracts.

e Trade Intervention: forceBuyMeme and forceSell allow Owner/operator to bypass
normal queues and price checks to execute arbitrary trades.

e System Pause: pause() / unpause() permitimmediate suspension or resumption of
core protocol functions.

e Economic Parameter Control: Owner can change critical parameters (e.g.,
executorReward , maxSaleSlippage , maxSinglePurchase) that directly affect
protocol behaviour and user outcomes.

e Module & Router Management: addModule , addApprovedRouter , fundModule
allow adding/removing and funding external modules/routers — potentially directing
funds to arbitrary contracts.

Impact

12/27

If the Owner or any authorized operator is compromised, or if these roles act maliciously,

an attacker can:

e Drain protocol treasury and user funds.
e Manipulate markets by forcing trades or setting abusive fee schedules.
e Pause the protocol maliciously.

e Redirect funds to malicious modules or routers.

Use multi-signature.

13/27

MSH-2 Redundant Code

Informational

Fixed

src/MemeStrategyHook.sol#550 626

In the beforeSwap and afterSwap hookimplementations, the exact same preliminary

checks exist:

if (IfeesEnabled) {... }

if (sender == address(STRATEGY) | | feeExempt[sender]){ ... }

Both functions repeat these checks at their entry points, and they always yield the same

result.

Combine the conditions into a single-line check at the entry of both functions.

if (
IfeesEnabled | |
sender == address(STRATEGY) | |

feeExempt[sender]

)

return (...);

This issue has been fixed. The client has adopted our suggestions.

14/27

MST-1 addOperator and removeOperator Lack Duplicate
State Checks

Minor

Fixed

src/MemeStrategy.sol#513-523;
src/MemeStrategyHook.sol#301-313

In the current implementation, the logic of addOperator and removeOperator is as

follows:

function addOperator(address _operator) external onlyOwner {
if (_operator == address(0)) revert InvalidAddress();
operators[_operator] = true;
emit OperatorAdded(_operator);

}

function removeOperator(address _operator) external onlyOwner {
operators[_operator] = false;
emit OperatorRemoved(_operator);

}

However, both functions lack state duplication checks:

e addOperator does not verify whether _operator is already setto true . Addingthe
same address multiple times will not revert, but it will repeatedly emit the
OperatorAdded event, causing inconsistency between the contract state and the

event logs.

e removeOperator does not verify whether _operator is an existing operator.
Removing an address that was never added will not revert either, leading to misleading

OperatorRemoved events.

15/27

Add duplicate state checks to both functions:

function addOperator(address _operator) external onlyOwner {
if (_operator == address(0)) revert InvalidAddress();
if (operators[_operator]) revert AlreadyOperator();
operators[_operator] = true;
emit OperatorAdded(_operator);

function removeOperator(address _operator) external onlyOwner {
if (loperators[_operator]) revert NotOperator();
operators[_operator] = false;
emit OperatorRemoved(_operator);

This issue has been fixed. The client has adopted our suggestions.

16/27

MST-2 Missing Check to Prevent Redundant Router Updates

Minor

Fixed

src/MemeStrategy.sol#634

The updateTokenRouter() function allows the contract owner to update the V2 router
address for a whitelisted token. However, it does not check whether the new router address

(_newRouter) is the same as the current one.

function updateTokenRouter(
address _token,
address _newRouter
) external onlyOwner {
if (_ newRouter == address(0)) revert InvalidAddress();

if lapprovedRouters[_newRouter]) revert RouterNotApproved();
if (lwhitelistedTokens[_token].isWhitelisted)
revert TokenNotWhitelisted();

whitelistedTokens[_token].v2Router = _newRouter;

This lack of equality check can result in redundant updates to the same address, causing

unnecessary storage writes and event emissions.

Add an equality check before the update to prevent setting the router to the same address

as the current value:

if (whitelistedTokens[_token].v2ZRouter == _newRouter)

revert SameRouterNotAllowed();

17127

This issue has been fixed. The client has adopted our suggestions.

18/27

MST-3 addModule and removeModule Functions are
Missing Event Emissions

Minor

Fixed

src/MemeStrategy.sol#885 896

In the addModule and removeModule functions, the contract modifies critical module
whitelist states (whitelistedModules , moduleList , and modulelndex) but does not emit

any events. However, the event previously used for these operations was removed.

This issue has been fixed. The client has adopted our suggestions.

19/27

MST-4 Missing Existence Checks in addMemToken and
removeMemeToken

Minor

Fixed

src/MemeStrategy.sol#600-620

Both addMemeToken and removeMemeToken functions lack proper existence checks

when modifying the whitelist mapping.

e In addMemeToken , the function adds a token to the whitelist without verifying

whether it is already whitelisted.

e In removeMemeToken , the function sets isWhitelisted = false without verifying that

the token is currently whitelisted.

Add explicit state validation before modifying whitelist entries.

function addMemeToken(address _token, address v2Router) external
onlyOwnerOrOperator {
if (_token == address(0) | | _v2Router == address(0)) revert InvalidAddress();
if lapprovedRouters[v2Router]) revert RouterNotApproved();
if (whitelistedTokens[_tokenl.isWhitelisted) revert TokenAlreadyWhitelisted();

whitelistedTokens[_token] = MemeToken({
v2Router: v2Router,
isWhitelisted: true

3,

emit MemeTokenWhitelisted(_token, v2Router);

20/27

function removeMemeToken(address _token) external onlyOwnerOrOperator {
if lwhitelistedTokens[_token].isWhitelisted) revert TokenNotWhitelisted();

whitelistedTokens[_token].isWhitelisted = false;
emit MemeTokenDelisted(_token);

This issue has been fixed. The client has adopted our suggestions.

21/27

MST-5 Inconsistent Revert Message in onlyOwnerOrOperator
Modifier

Informational

Fixed

src/MemeStrategy.sol#340;
src/MemeStrategyHook.sol#292

MemeStrategy.sol and MemeStrategyHook.sol each define a version of the
onlyOwnerOrOperator modifier with identical logic: both check whether the caller

(msg.sender) is the owner or an authorized operator.

modifier onlyOwnerOrOperator() {
if (msg.sender = OWNER && loperators[msg.sender]) revert OnlyOwner();

-

modifier onlyOwnerOrOperator() {
if (msg.sender != owner() && loperators[msg.sender])
revert NotAuthorized();

However, they revert with different custom error messages — OnlyOwner() in one version
and NotAuthorized() in the other — which could be misleading, especially the use of

OnlyOwner(), as it does not indicate that operators are also permitted.

Change the onlyOwnerOrOperator modifier in MemeStrategyHook.sol to use the same

NotAuthorized() revert message asin MemeStrategy.sol .

22/27

This issue has been fixed. The client has adopted our suggestions.

23/27

MST-6 Comment Description Inconsistent with Code
Implementation

Informational

Fixed

src/MemeStrategy.sol#1238-1247

The comment states Current price must be >= targetEntryPrice (more tokens per ETH =

better) , but the code actually uses pricePerToken > queue.targetEntryPrice .

Update the comment to correctly reflect the logic as: Current price must be <=

targetEntryPrice (more tokens per ETH = better).

This issue has been fixed. The client has adopted our suggestions.

24/27

MSV-1 Unused purchaseld Parameter Passed to
_addActivePurchase() Function

Informational

Fixed

src/MemeStrategyViews.sol#1634

In the _executeMemeTokenPurchase() function, the protocol calls _addActivePurchase() to
increase the active purchase counter and passes a parameter purchaseld . However, this

purchaseld parameter is never used within the function.

function _addActivePurchase(uint256) internal {

activePurchaseCount++;

It is recommended to remove the unused purchaseld parameter from the

_addActivePurchase() function to simplify the code and improve clarity.

This issue has been fixed. The client has adopted our suggestions.

25/27

Informational issues are often recommendations to improve the style of the code or
to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive
information at risk, and often are not directly exploitable. All major issues should be
fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information at risk. All critical issues should be fixed.

Fixed: The issue has been resolved.
Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

26/27

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

27127

	1014_page1.pdf
	1014_page2.pdf

