
Audit Report

Fri Oct 17 2025

contact@bitslab.xyz https://twitter.com/scalebit_

Meme Strategy

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Meme Strategy Audit Report

1 Executive Summary

1.1 Project Information

Description MEMS is an innovative DeFi protocol that combines
automated meme token trading through a queue-based
system, dynamic fee collection via a Uniswap V4 hook with 3-
phase fee system , a buyback and burn mechanism that
automatically uses profits to repurchase and burn MEMS
tokens, and treasury operations that allocate 80% of fees to
the strategy while 20% goes to the treasury as rake

Type DeFi

Auditors Alex,hyer,Light

Timeline Thu Oct 09 2025 - Fri Oct 17 2025

Languages Solidity

Platform EVM Chains

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/yokai-laboratory/mems-strategy

Commits 2ba2cff9a5e7bf2ff6332d1ad0b7d445aece3665
cc0f970fa3ad397b35602cea2e8087face56e5e7
d493c92f9b2b0b8a1113f073af9d97106a7daabd

1/27

https://github.com/yokai-laboratory/mems-strategy
https://github.com/yokai-laboratory/mems-strategy/tree/2ba2cff9a5e7bf2ff6332d1ad0b7d445aece3665
https://github.com/yokai-laboratory/mems-strategy/tree/cc0f970fa3ad397b35602cea2e8087face56e5e7
https://github.com/yokai-laboratory/mems-strategy/tree/d493c92f9b2b0b8a1113f073af9d97106a7daabd

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MST src/MemeStrategy.sol 5d42b5345345c44c00a7cf2f5b6c9
5c39ee37591

MSH src/MemeStrategyHook.sol 2d2d44c73954b0445675d84791eb
d93afa513443

2/27

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 9 8 1

Informational 4 4 0

Minor 4 4 0

Medium 1 0 1

Major 0 0 0

Critical 0 0 0

3/27

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/27

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/27

2 Summary

This report has been commissioned by Meme Strategy to identify any potential issues and
vulnerabilities in the source code of the MemeStrategy smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 9 issues of varying severity, listed below.

ID Title Severity Status

MSH-1 Centralization Risk Medium Acknowledged

MSH-2 Redundant Code Informational Fixed

MST-1 addOperator and
removeOperator Lack Duplicate

State Checks

Minor Fixed

MST-2 Missing Check to Prevent
Redundant Router Updates

Minor Fixed

MST-3 addModule and removeModule
Functions are Missing Event
Emissions

Minor Fixed

MST-4 Missing Existence Checks in
addMemToken and
removeMemeToken

Minor Fixed

MST-5 Inconsistent Revert Message in
onlyOwnerOrOperator Modifier

Informational Fixed

6/27

MST-6 Comment Description Inconsistent
with Code Implementation

Informational Fixed

MSV-1 Unused purchaseId Parameter
Passed to _addActivePurchase()
Function

Informational Fixed

7/27

3 Participant Process

Here are the relevant actors with their respective abilities within the MemeStrategy Smart
Contract :
Owner

addOperator : Add operator address.

removeOperator : Remove operator address.

renounceOwnership : Permanently renounce ownership.

setFeeExemption : Set fee exemption status for addresses, allowing specific modules

to bypass fees.

disableFees : Disable fee collection.

updateFeeTier : Update single fee tier parameters.

updateAllFeeTiers : Update all fee tier configurations at once.

emergencyWithdrawETH : Emergency withdraw ETH funds from contract.

initializePoolAndAddLiquidity : Initialize Uniswap V4 pool and add initial liquidity.

enableTrading : Enable token trading.

addMemeToken : Add other tokens to whitelist for trading.

removeMemeToken : Remove tokens from whitelist.

updateTokenRouter : Update router address for whitelisted tokens.

setExecutorReward : Set executor reward amount.

setMaxSaleSlippage : Set maximum slippage tolerance when selling tokens.

setMinForceSellBPS : Set minimum return percentage for forced sales.

setMaxBuybackSlippage : Set maximum slippage for MEMS token buybacks.

setHookAddress : Update hook contract address.

8/27

addApprovedRouter : Add approved router addresses for trading.

removeApprovedRouter : Remove approved router addresses.

setMaxSinglePurchase : Set maximum ETH amount for single purchase.

setMinSpikeThreshold : Set minimum ETH threshold to trigger fee spikes.

setMaxQueueSize : Set maximum size for purchase queue.

addModule : Add module contracts to whitelist.

removeModule : Remove module contracts from whitelist.

pause : Pause all critical contract operations.

unpause : Unpause and resume contract operations.

forceSell : Force sell tokens for specific purchase ID.

forceSellToTreasury : Force sell tokens to treasury.

forceBurn : Manually execute buyback and burn of MEMS tokens.

emergencyWithdrawTokens : Emergency withdraw ERC20 tokens from contract

(excluding MEMS).

emergencyWithdrawETH : Emergency withdraw ETH funds from contract.

fundModule : Push ETH funds to whitelisted modules.

Operator

enableFees : Enable fee collection system.

flushToStrategy : Flush accumulated strategy fees to MemeStrategy contract.

flushRake : Flush accumulated rake fees to treasury address.

flushAllFees : Flush all pending fees at once.

updateFeeTier : Update fee tier parameters.

updateAllFeeTiers : Update all fee tiers.

9/27

enableTrading : Enable token trading.

addMemeToken : Add other tokens to whitelist.

removeMemeToken : Remove tokens from whitelist.

queueMemePurchase : Add purchase requests to queue.

forceBuyMeme : Force immediate purchase.

clearQueue : Clear specific queue ID purchase requests.

removeQueuedPurchase : Remove specific purchase requests from queue.

executeQueuedPurchase : Execute specific purchase requests from queue.

MemeStrategy Contract

notifyFirstSale : Notify hook contract that first sale is completed, triggering Phase 2

activation.

triggerFeeSpike : Trigger fee spike based on sale amount.

addFeesETH : Receive ETH fees transferred from hook contract.

PoolManager

beforeSwap : Called before swap to handle buy-side fees.

afterSwap : Called after swap to handle sell-side fees.

unlockCallback : Handle Uniswap V4 unlock callback to execute atomic swaps.

User

getCurrentFee : Query current dynamic fees.

getPhaseInfo : Get current phase information.

getSpikeInfo : Get active fee spike information.

getTierForAmount : Query corresponding fee tier based on ETH amount.

getPendingFees : Get pending fee balances.

10/27

executeSale : Execute token sale and immediately buyback MEMS when target price is

reached.

executeSaleToTreasury : Execute token sale to treasury.

receive : Receive ETH deposits to contract.

Module

pullFundsFromTreasury : Pull ETH funds from treasury to module contract.

11/27

4 Findings

MSH-1 Centralization Risk

Severity: Medium

Status: Acknowledged

Code Location:

src/MemeStrategyHook.sol#305,315,327,338,350,363,377,388,407,545,565,769,791,836;

src/MemeStrategyHook.sol#462,510,517,526,611,627,640,668,725,761,776,795,803,807,814,818,823,8

Descriptions:

Both MemeStrategy.sol and MemeStrategyHook.sol give the Owner (and in some cases

operator) broad unilateral powers over funds, trading behavior, and economic parameters.

Key privileged capabilities include:

Fund Withdrawal: emergencyWithdrawETH , emergencyWithdrawTokens and

emergencyWithdrawETH allow the Owner to withdraw essentially all ETH and ERC20

held by the contracts.

Trade Intervention: forceBuyMeme and forceSell allow Owner/operator to bypass

normal queues and price checks to execute arbitrary trades.

System Pause: pause() / unpause() permit immediate suspension or resumption of

core protocol functions.

Economic Parameter Control: Owner can change critical parameters (e.g.,

executorReward , maxSaleSlippage , maxSinglePurchase) that directly affect

protocol behaviour and user outcomes.

Module & Router Management: addModule , addApprovedRouter , fundModule

allow adding/removing and funding external modules/routers — potentially directing

funds to arbitrary contracts.

Impact

12/27

If the Owner or any authorized operator is compromised, or if these roles act maliciously,

an attacker can:

Drain protocol treasury and user funds.

Manipulate markets by forcing trades or setting abusive fee schedules.

Pause the protocol maliciously.

Redirect funds to malicious modules or routers.

Suggestion:

Use multi-signature.

13/27

MSH-2 Redundant Code

Severity: Informational

Status: Fixed

Code Location:

src/MemeStrategyHook.sol#550，626

Descriptions:

In the beforeSwap and afterSwap hook implementations, the exact same preliminary

checks exist:

ifif ((!!feesEnabledfeesEnabled)) {{ }}

ifif ((sender sender ==== addressaddress((STRATEGYSTRATEGY)) |||| feeExempt feeExempt[[sendersender]])) {{ }}

Both functions repeat these checks at their entry points, and they always yield the same

result.

Suggestion:

Combine the conditions into a single-line check at the entry of both functions.

ifif ((
 !!feesEnabled feesEnabled ||||
 sender sender ==== addressaddress((STRATEGYSTRATEGY)) ||||
 feeExemptfeeExempt[[sendersender]]
)) {{
 returnreturn ((......));;
}}

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/27

MST-1 addOperator and removeOperator Lack Duplicate
State Checks

Severity: Minor

Status: Fixed

Code Location:

src/MemeStrategy.sol#513-523;

src/MemeStrategyHook.sol#301-313

Descriptions:

In the current implementation, the logic of addOperator and removeOperator is as

follows:

functionfunction addOperatoraddOperator((address _operatoraddress _operator)) external onlyOwner external onlyOwner {{
 ifif ((_operator _operator ==== addressaddress((00)))) revert revert InvalidAddressInvalidAddress(());;
 operatorsoperators[[_operator_operator]] == truetrue;;
 emit emit OperatorAddedOperatorAdded((_operator_operator));;
}}

functionfunction removeOperatorremoveOperator((address _operatoraddress _operator)) external onlyOwner external onlyOwner {{
 operatorsoperators[[_operator_operator]] == falsefalse;;
 emit emit OperatorRemovedOperatorRemoved((_operator_operator));;
}}

However, both functions lack state duplication checks:

addOperator does not verify whether _operator is already set to true . → Adding the

same address multiple times will not revert, but it will repeatedly emit the

OperatorAdded event, causing inconsistency between the contract state and the

event logs.

removeOperator does not verify whether _operator is an existing operator. →

Removing an address that was never added will not revert either, leading to misleading

OperatorRemoved events.

15/27

Suggestion:

Add duplicate state checks to both functions:

functionfunction addOperatoraddOperator((address _operatoraddress _operator)) external onlyOwner external onlyOwner {{
 ifif ((_operator _operator ==== addressaddress((00)))) revert revert InvalidAddressInvalidAddress(());;
 ifif ((operatorsoperators[[_operator_operator]])) revert revert AlreadyOperatorAlreadyOperator(());; // Prevent duplicate addition// Prevent duplicate addition
 operatorsoperators[[_operator_operator]] == truetrue;;
 emit emit OperatorAddedOperatorAdded((_operator_operator));;
}}

functionfunction removeOperatorremoveOperator((address _operatoraddress _operator)) external onlyOwner external onlyOwner {{
 ifif ((!!operatorsoperators[[_operator_operator]])) revert revert NotOperatorNotOperator(());; // Prevent duplicate removal// Prevent duplicate removal
 operatorsoperators[[_operator_operator]] == falsefalse;;
 emit emit OperatorRemovedOperatorRemoved((_operator_operator));;
}}

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/27

MST-2 Missing Check to Prevent Redundant Router Updates

Severity: Minor

Status: Fixed

Code Location:

src/MemeStrategy.sol#634

Descriptions:

The updateTokenRouter() function allows the contract owner to update the V2 router

address for a whitelisted token. However, it does not check whether the new router address

(_newRouter) is the same as the current one.

functionfunction updateTokenRouterupdateTokenRouter((
 address _tokenaddress _token,,
 address _newRouteraddress _newRouter
)) external onlyOwner external onlyOwner {{
 ifif ((_newRouter _newRouter ==== addressaddress((00)))) revert revert InvalidAddressInvalidAddress(());;
 ifif ((!!approvedRoutersapprovedRouters[[_newRouter_newRouter]])) revert revert RouterNotApprovedRouterNotApproved(());;
 ifif ((!!whitelistedTokenswhitelistedTokens[[_token_token]]..isWhitelistedisWhitelisted))
 revert revert TokenNotWhitelistedTokenNotWhitelisted(());;

 whitelistedTokenswhitelistedTokens[[_token_token]]..v2Routerv2Router == _newRouter _newRouter;;
 }}

This lack of equality check can result in redundant updates to the same address, causing

unnecessary storage writes and event emissions.

Suggestion:

Add an equality check before the update to prevent setting the router to the same address

as the current value:

ifif ((whitelistedTokenswhitelistedTokens[[_token_token]]..v2Routerv2Router ==== _newRouter _newRouter))
 revert revert SameRouterNotAllowedSameRouterNotAllowed(());;

17/27

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/27

MST-3 addModule and removeModule Functions are
Missing Event Emissions

Severity: Minor

Status: Fixed

Code Location:

src/MemeStrategy.sol#885，896

Descriptions:

In the addModule and removeModule functions, the contract modifies critical module

whitelist states (whitelistedModules , moduleList , and moduleIndex) but does not emit

any events. However, the event previously used for these operations was removed.

Suggestion:

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/27

MST-4 Missing Existence Checks in addMemToken and
removeMemeToken

Severity: Minor

Status: Fixed

Code Location:

src/MemeStrategy.sol#600-620

Descriptions:

Both addMemeToken and removeMemeToken functions lack proper existence checks

when modifying the whitelist mapping.

In addMemeToken , the function adds a token to the whitelist without verifying

whether it is already whitelisted.

In removeMemeToken , the function sets isWhitelisted = false without verifying that

the token is currently whitelisted.

Suggestion:

Add explicit state validation before modifying whitelist entries.

functionfunction addMemeTokenaddMemeToken((address _tokenaddress _token,, address _v2Router address _v2Router)) external external
onlyOwnerOrOperator onlyOwnerOrOperator {{
 ifif ((_token _token ==== addressaddress((00)) |||| _v2Router _v2Router ==== addressaddress((00)))) revert revert InvalidAddressInvalidAddress(());;
 ifif ((!!approvedRoutersapprovedRouters[[_v2Router_v2Router]])) revert revert RouterNotApprovedRouterNotApproved(());;
 ifif ((whitelistedTokenswhitelistedTokens[[_token_token]]..isWhitelistedisWhitelisted)) revert revert TokenAlreadyWhitelistedTokenAlreadyWhitelisted(());;

 whitelistedTokenswhitelistedTokens[[_token_token]] == MemeTokenMemeToken(({{
 v2Routerv2Router:: _v2Router _v2Router,,
 isWhitelistedisWhitelisted:: truetrue
 }}));;

 emit emit MemeTokenWhitelistedMemeTokenWhitelisted((_token_token,, _v2Router _v2Router));;
}}

20/27

functionfunction removeMemeTokenremoveMemeToken((address _tokenaddress _token)) external onlyOwnerOrOperator external onlyOwnerOrOperator {{
 ifif ((!!whitelistedTokenswhitelistedTokens[[_token_token]]..isWhitelistedisWhitelisted)) revert revert TokenNotWhitelistedTokenNotWhitelisted(());;

 whitelistedTokenswhitelistedTokens[[_token_token]]..isWhitelistedisWhitelisted == falsefalse;;
 emit emit MemeTokenDelistedMemeTokenDelisted((_token_token));;
}}

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/27

MST-5 Inconsistent Revert Message in onlyOwnerOrOperator
Modifier

Severity: Informational

Status: Fixed

Code Location:

src/MemeStrategy.sol#340;

src/MemeStrategyHook.sol#292

Descriptions:

MemeStrategy.sol and MemeStrategyHook.sol each define a version of the

onlyOwnerOrOperator modifier with identical logic: both check whether the caller

(msg.sender) is the owner or an authorized operator.

 modifier modifier onlyOwnerOrOperatoronlyOwnerOrOperator(()) {{
 ifif ((msgmsg..sendersender !=!= OWNEROWNER &&&& !!operatorsoperators[[msgmsg..sendersender]])) revert revert OnlyOwnerOnlyOwner(());;
 __;;
 }}

 modifier modifier onlyOwnerOrOperatoronlyOwnerOrOperator(()) {{
 ifif ((msgmsg..sendersender !=!= ownerowner(()) &&&& !!operatorsoperators[[msgmsg..sendersender]]))
 revert revert NotAuthorizedNotAuthorized(());;
 __;;
 }}

However, they revert with different custom error messages — OnlyOwner() in one version

and NotAuthorized() in the other — which could be misleading, especially the use of

OnlyOwner(), as it does not indicate that operators are also permitted.

Suggestion:

Change the onlyOwnerOrOperator modifier in MemeStrategyHook.sol to use the same

NotAuthorized() revert message as in MemeStrategy.sol .

22/27

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/27

MST-6 Comment Description Inconsistent with Code
Implementation

Severity: Informational

Status: Fixed

Code Location:

src/MemeStrategy.sol#1238-1247

Descriptions:

The comment states Current price must be >= targetEntryPrice (more tokens per ETH =

better) , but the code actually uses pricePerToken > queue.targetEntryPrice .

Suggestion:

Update the comment to correctly reflect the logic as: Current price must be <=

targetEntryPrice (more tokens per ETH = better).

Resolution:

This issue has been fixed. The client has adopted our suggestions.

24/27

MSV-1 Unused purchaseId Parameter Passed to
_addActivePurchase() Function

Severity: Informational

Status: Fixed

Code Location:

src/MemeStrategyViews.sol#1634

Descriptions:

In the _executeMemeTokenPurchase() function, the protocol calls _addActivePurchase() to

increase the active purchase counter and passes a parameter purchaseId . However, this

purchaseId parameter is never used within the function.

 functionfunction _addActivePurchase_addActivePurchase((uint256 uint256 /* _purchaseId *//* _purchaseId */)) internal internal {{
 activePurchaseCountactivePurchaseCount++++;;
 }}

Suggestion:

It is recommended to remove the unused purchaseId parameter from the

_addActivePurchase() function to simplify the code and improve clarity.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

25/27

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

26/27

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

27/27

	1014_page1.pdf
	1014_page2.pdf

